Recurrent Neural Networks for Short-Term Load Forecasting

Recurrent Neural Networks for Short-Term Load Forecasting
Author :
Publisher : Springer
Total Pages : 74
Release :
ISBN-10 : 9783319703381
ISBN-13 : 3319703382
Rating : 4/5 (81 Downloads)

Book Synopsis Recurrent Neural Networks for Short-Term Load Forecasting by : Filippo Maria Bianchi

Download or read book Recurrent Neural Networks for Short-Term Load Forecasting written by Filippo Maria Bianchi and published by Springer. This book was released on 2017-11-09 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.


Recurrent Neural Networks for Short-Term Load Forecasting Related Books

Recurrent Neural Networks for Short-Term Load Forecasting
Language: en
Pages: 74
Authors: Filippo Maria Bianchi
Categories: Computers
Type: BOOK - Published: 2017-11-09 - Publisher: Springer

DOWNLOAD EBOOK

The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both serv
Parameterization Schemes
Language: en
Pages: 408
Authors: David J. Stensrud
Categories: Science
Type: BOOK - Published: 2007-05-03 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Contents: 1.
Introduction to Deep Learning
Language: en
Pages: 196
Authors: Sandro Skansi
Categories: Computers
Type: BOOK - Published: 2018-02-04 - Publisher: Springer

DOWNLOAD EBOOK

This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the
Comparison of neutrosophic approach to various deep learning models for sentiment analysis
Language: en
Pages: 14
Authors: Mayukh Sharma
Categories: Mathematics
Type: BOOK - Published: - Publisher: Infinite Study

DOWNLOAD EBOOK

Deep learning has been widely used in numerous real-world engineering applications and for classification problems. Real-world data is present with neutrality a
Deep Learning
Language: en
Pages: 212
Authors: Li Deng
Categories: Machine learning
Type: BOOK - Published: 2014 - Publisher:

DOWNLOAD EBOOK

Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks