Math and Architectures of Deep Learning

Math and Architectures of Deep Learning
Author :
Publisher : Simon and Schuster
Total Pages : 550
Release :
ISBN-10 : 9781617296482
ISBN-13 : 1617296481
Rating : 4/5 (82 Downloads)

Book Synopsis Math and Architectures of Deep Learning by : Krishnendu Chaudhury

Download or read book Math and Architectures of Deep Learning written by Krishnendu Chaudhury and published by Simon and Schuster. This book was released on 2024-03-26 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. You'll peer inside the "black box" to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You'll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You'll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you'll be glad you can quickly identify and fix problems.


Math and Architectures of Deep Learning Related Books

Math and Architectures of Deep Learning
Language: en
Pages: 550
Authors: Krishnendu Chaudhury
Categories: Computers
Type: BOOK - Published: 2024-03-26 - Publisher: Simon and Schuster

DOWNLOAD EBOOK

Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementa
Mathematics for Machine Learning
Language: en
Pages: 392
Authors: Marc Peter Deisenroth
Categories: Computers
Type: BOOK - Published: 2020-04-23 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, opti
Hands-On Mathematics for Deep Learning
Language: en
Pages: 347
Authors: Jay Dawani
Categories: Computers
Type: BOOK - Published: 2020-06-12 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear alge
Mathematical Engineering of Deep Learning
Language: en
Pages: 415
Authors: Benoit Liquet
Categories: Computers
Type: BOOK - Published: 2024-10-03 - Publisher: CRC Press

DOWNLOAD EBOOK

Mathematical Engineering of Deep Learning provides a complete and concise overview of deep learning using the language of mathematics. The book provides a self-
Data-Driven Science and Engineering
Language: en
Pages: 615
Authors: Steven L. Brunton
Categories: Computers
Type: BOOK - Published: 2022-05-05 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLABĀ®.