Graph Representation Learning

Graph Representation Learning
Author :
Publisher : Springer Nature
Total Pages : 141
Release :
ISBN-10 : 9783031015885
ISBN-13 : 3031015886
Rating : 4/5 (85 Downloads)

Book Synopsis Graph Representation Learning by : William L. William L. Hamilton

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.


Graph Representation Learning Related Books

Graph Representation Learning
Language: en
Pages: 141
Authors: William L. William L. Hamilton
Categories: Computers
Type: BOOK - Published: 2022-06-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational induct
Representation Learning for Natural Language Processing
Language: en
Pages: 319
Authors: Zhiyuan Liu
Categories: Computers
Type: BOOK - Published: 2020-07-03 - Publisher: Springer Nature

DOWNLOAD EBOOK

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing
Representation Learning
Language: en
Pages: 175
Authors: Nada Lavrač
Categories: Computers
Type: BOOK - Published: 2021-07-10 - Publisher: Springer Nature

DOWNLOAD EBOOK

This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data tr
Handbook of Learning from Multiple Representations and Perspectives
Language: en
Pages: 696
Authors: Peggy Van Meter
Categories: Education
Type: BOOK - Published: 2020-03-10 - Publisher: Routledge

DOWNLOAD EBOOK

In and out of formal schooling, online and off, today’s learners must consume and integrate a level of information that is exponentially larger and delivered
Multiple Representations in Physics Education
Language: en
Pages: 329
Authors: David F. Treagust
Categories: Science
Type: BOOK - Published: 2017-07-24 - Publisher: Springer

DOWNLOAD EBOOK

This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teach