Applied Compositional Data Analysis
Author | : Peter Filzmoser |
Publisher | : Springer |
Total Pages | : 288 |
Release | : 2018-11-03 |
ISBN-10 | : 9783319964225 |
ISBN-13 | : 3319964224 |
Rating | : 4/5 (25 Downloads) |
Download or read book Applied Compositional Data Analysis written by Peter Filzmoser and published by Springer. This book was released on 2018-11-03 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.