Big Data Processing Using Spark in Cloud
Author | : Mamta Mittal |
Publisher | : Springer |
Total Pages | : 275 |
Release | : 2018-06-16 |
ISBN-10 | : 9789811305504 |
ISBN-13 | : 9811305501 |
Rating | : 4/5 (04 Downloads) |
Download or read book Big Data Processing Using Spark in Cloud written by Mamta Mittal and published by Springer. This book was released on 2018-06-16 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data’s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data. The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.