Effective Electron Mass in Low-Dimensional Semiconductors
Author | : Sitangshu Bhattacharya |
Publisher | : Springer |
Total Pages | : 536 |
Release | : 2012-10-06 |
ISBN-10 | : 3642312497 |
ISBN-13 | : 9783642312496 |
Rating | : 4/5 (97 Downloads) |
Download or read book Effective Electron Mass in Low-Dimensional Semiconductors written by Sitangshu Bhattacharya and published by Springer. This book was released on 2012-10-06 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the Effective Electron Mass (EEM) in low dimensional semiconductors. The materials considered are quantum confined non-linear optical, III-V, II-VI, GaP, Ge, PtSb2, zero-gap, stressed, Bismuth, carbon nanotubes, GaSb, IV-VI, Te, II-V, Bi2Te3, Sb, III-V, II-VI, IV-VI semiconductors and quantized III-V, II-VI, IV-VI and HgTe/CdTe superlattices with graded interfaces and effective mass superlattices. The presence of intense electric field and the light waves change the band structure of optoelectronic semiconductors in fundamental ways, which have also been incorporated in the study of the EEM in quantized structures of optoelectronic compounds that control the studies of the quantum effect devices under strong fields. The importance of measurement of band gap in optoelectronic materials under strong electric field and external photo excitation has also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the EEM and the EEM in heavily doped semiconductors and their nanostructures is discussed. This book contains 200 open research problems which form the integral part of the text and are useful for both Ph. D aspirants and researchers in the fields of solid-state sciences, materials science, nanoscience and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures. The book is written for post graduate students, researchers and engineers, professionals in the fields of solid state sciences, materials science, nanoscience and technology, nanostructured materials and condensed matter physics.