Fundamentals of Neural Networks

Fundamentals of Neural Networks
Author :
Publisher : Prentice Hall
Total Pages : 300
Release :
ISBN-10 : 013336769X
ISBN-13 : 9780133367690
Rating : 4/5 (9X Downloads)

Book Synopsis Fundamentals of Neural Networks by : Fausett

Download or read book Fundamentals of Neural Networks written by Fausett and published by Prentice Hall. This book was released on 1994 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Fundamentals of Neural Networks Related Books

Fundamentals of Neural Network Modeling
Language: en
Pages: 450
Authors: Randolph W. Parks
Categories: Computers
Type: BOOK - Published: 1998 - Publisher: MIT Press

DOWNLOAD EBOOK

Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has be
Fundamentals of Artificial Neural Networks
Language: en
Pages: 546
Authors: Mohamad H. Hassoun
Categories: Computers
Type: BOOK - Published: 1995 - Publisher: MIT Press

DOWNLOAD EBOOK

A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into
Multivariate Statistical Machine Learning Methods for Genomic Prediction
Language: en
Pages: 707
Authors: Osval Antonio Montesinos López
Categories: Technology & Engineering
Type: BOOK - Published: 2022-02-14 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statis
Fundamentals of Neural Networks
Language: en
Pages: 300
Authors: Fausett
Categories:
Type: BOOK - Published: 1994 - Publisher: Prentice Hall

DOWNLOAD EBOOK

Artificial Higher Order Neural Networks for Modeling and Simulation
Language: en
Pages: 455
Authors: Zhang, Ming
Categories: Computers
Type: BOOK - Published: 2012-10-31 - Publisher: IGI Global

DOWNLOAD EBOOK

"This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to tr