Hierarchical Bayesian Optimization Algorithm

Hierarchical Bayesian Optimization Algorithm
Author :
Publisher : Springer Science & Business Media
Total Pages : 194
Release :
ISBN-10 : 3540237747
ISBN-13 : 9783540237747
Rating : 4/5 (47 Downloads)

Book Synopsis Hierarchical Bayesian Optimization Algorithm by : Martin Pelikan

Download or read book Hierarchical Bayesian Optimization Algorithm written by Martin Pelikan and published by Springer Science & Business Media. This book was released on 2005-02 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a framework for the design of competent optimization techniques by combining advanced evolutionary algorithms with state-of-the-art machine learning techniques. The book focuses on two algorithms that replace traditional variation operators of evolutionary algorithms by learning and sampling Bayesian networks: the Bayesian optimization algorithm (BOA) and the hierarchical BOA (hBOA). BOA and hBOA are theoretically and empirically shown to provide robust and scalable solution for broad classes of nearly decomposable and hierarchical problems. A theoretical model is developed that estimates the scalability and adequate parameter settings for BOA and hBOA. The performance of BOA and hBOA is analyzed on a number of artificial problems of bounded difficulty designed to test BOA and hBOA on the boundary of their design envelope. The algorithms are also extensively tested on two interesting classes of real-world problems: MAXSAT and Ising spin glasses with periodic boundary conditions in two and three dimensions. Experimental results validate the theoretical model and confirm that BOA and hBOA provide robust and scalable solution for nearly decomposable and hierarchical problems with only little problem-specific information.


Hierarchical Bayesian Optimization Algorithm Related Books

Hierarchical Bayesian Optimization Algorithm
Language: en
Pages: 194
Authors: Martin Pelikan
Categories: Computers
Type: BOOK - Published: 2005-02 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book provides a framework for the design of competent optimization techniques by combining advanced evolutionary algorithms with state-of-the-art machine l
Scalable Optimization via Probabilistic Modeling
Language: en
Pages: 363
Authors: Martin Pelikan
Categories: Mathematics
Type: BOOK - Published: 2007-01-12 - Publisher: Springer

DOWNLOAD EBOOK

I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading p
Advances in Soft Computing
Language: en
Pages: 627
Authors: Rajkumar Roy
Categories: Technology & Engineering
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Advances in Soft Computing contains the most recent developments in the field of soft computing in engineering design and manufacture. The book comprises a sele
Parameter Setting in Evolutionary Algorithms
Language: en
Pages: 323
Authors: F.J. Lobo
Categories: Mathematics
Type: BOOK - Published: 2007-03-16 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

One of the main difficulties of applying an evolutionary algorithm (or, as a matter of fact, any heuristic method) to a given problem is to decide on an appropr
Clever Algorithms
Language: en
Pages: 437
Authors: Jason Brownlee
Categories: Computers
Type: BOOK - Published: 2011 - Publisher: Jason Brownlee

DOWNLOAD EBOOK

This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that ha