Integrated Analytical Systems
Author | : Salvador Alegret |
Publisher | : Gulf Professional Publishing |
Total Pages | : 744 |
Release | : 2003-06-19 |
ISBN-10 | : 0444510370 |
ISBN-13 | : 9780444510372 |
Rating | : 4/5 (70 Downloads) |
Download or read book Integrated Analytical Systems written by Salvador Alegret and published by Gulf Professional Publishing. This book was released on 2003-06-19 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lntegration, a new paradigm in analytical chemistry; Integration in science and technology; Integration in analytical chemistry; Partsand components; Supportedreagents; Separation membranes; Systems; Total analysis systems; Miniaturised systems; Networked systems; Sensors; Electrochemical sensors; Optochemical sensors; Arraysystems; Redundant-sensor array systems; Selective-sensor array systems; Cross-selective sensor array systems; Microsystems; Microsensors; Analytical microsystems; Array microsystems; Nanosystems; Conclusions and perspectives; lntegrated separation systems; General principIes ofbi-phase separation; Thermodynamics ofbi-phase equilibrium; Integration concepts in bi-phase separation; Integration of uptake and stripping steps; Multiplication of single separation effect; Frontal íon exchange chromatography; Reverse frontal íon exchange chromatography; Displacement chromatography; Tandem íon exchange fractionation; Combined separation techniques; Solvent extraction-ion exchange. Aqua impregnated resins; Ion exchange-crystallisation. Ion exchange isothermal supersaturation; Ion exchange supersaturation of zwitterlites; Ion exchange supersaturation of electrolytes; Solid-phase spectrometric assays; Integration of processes in solid-phase spectrometric assays; Types of solid-phase spectrometric assays; Features of solid-phase spectrometric assays; Particulated solid-phase spectrometric assays; Fixation process; Operational aspects; Analytical characteristics; Mixtures resolution; Analytical applications; Membrane solid-phase spectrometric assays; Membrane filtration systems; Membrane 'problem' equilibration systems; Membrane 'problem' deposit systems; Continuous flow analytical systems; Reverse flow injection; Integrating effect of conventional flow injection units; Confluencepoints; Exchangedunits; Modifiedunits; Duplicateunits; Derivatisation reactions in flow injection systems; Redox reactions involving solid reagents; Micellar media; Photoinduced reactions; Electrogenerated reagents; Catalytic reactions; External energy sources integrated with flow injection; Conventional heat sources; illtrasound energy sources; Use of electrical energy; Microwave energy assistance; In-line coupling of simple non-chromatographic continuous separation units and flow injection manifolds; Couplings with techniques involving gas-separation: gas-diffusers, pervaporators and others; Couplings with liquid-liquid separators: dialysers and liquid-liquid extractors; Couplingswith liquid-solid separators and solid phase formation; On-line separation equipment and flow injection manifolds; On-line coupling of robotics and flow injection manifolds; Detection in flow injection; Flow injection-detector interfaces; Automatic calibration; Special uses of conventional detectors coupled to FI; Three-dimensional and complex detectors coupled to FI; Screening and flow injection Integration and flow injection; Distributed analytical instrumentation systems; Theremoteconcept; Elements in a measurement system; Distributed systems topologies; Theremoteplace; The benefits of distributed intelligence; The computer-controlling function; Virtual instruments; Smart/intelligent sensors; The link; Industrial networks; Ethernet; Wireless links; The local place; Remote analytical instruments/systems: application examples; Laboratory information management systems; The analytical laboratory; Role of an analytical laboratory; Need to increase productivity; The aims oflaboratory automation; Problems with laboratory automation; Solutions for laboratory automation; What is laboratory automation?; A definition oflaboratory automation; Laboratory automation constituent groups; Instrument automation; Communications; Data to information conversion; Information management; A laboratory automation strategy in practice; Laboratory Information Management Systems; What is a LIMS?; A LIMS has two targets; Construction of the LIMS matrix; LIMS matrix views; Organisational integration and LIMS; LIMS and the system development life cycle; System development life cycle; Project proposal; The LIMS project team; User requirements specification and system selection; Functional specification; Qualification of the system; User training and roll-out strategies; Project close-out; Post-implementation review; Enhancement ofthe system and controlling change; Chemically modified electrodes with integrated biomolecules and molecular wires; Enzyme redox catalysis; Redox hydrogels; Self-assembled polyelectrolyte and protein films; Self-assembled enzyme films; Electrocatalysis; Electronhopping; Different molecular architectures; Structure ofself-assembled enzyme films; Atomic force microscopy; Ellipsometry; Combination of QCM and ellipsometric measurements; Infrared spectroscopy (FTIR); Composite and biocomposite materiais forelectrochemicalsensing; Composite electrode materiaIs; Conducting composite; Conducting biocomposites; Composite- and biocomposite-based electrochemical sensors; Conductometric sensors; Potentiometric sensors; Amperometric sensors; Thick-film sensors; Sensors for voltammetric stripping techniques; Optical chemical sensors and biosensor; Sensor structure; Optical fibers; Optoelectronic instrumentation; Molecular recognition element; Sensor designs; Modes of optical signal measurements; Absorbance measurement; Reflectance measurement; Fluorescence measurement; Chemiluminescence measurement; Electronic tongues: new analytical perspective of chemical sensors; General approach to the application of sensor arrays; Why use sensor systems?; Inspirations from chemometrics and biology; Advantages of sensor systems in comparlson with discrete sensors; Specific features of the sensors for the electronictongue; Electronic tongue systems; Sensors; System designs; Hybrid systems; Data processing; Selected applications ofthe electronic tongue; Application areas and analytes; Quantitative analysis; Qualitative analysis, recognition, identification andclassification; Comparison with human perception offlavours; Taste quantification; Application ofhybrid systems; Problems and perspective; A Taste sensor; Structure of the taste sensor; Response characteristics; Aminoacids; Classification oftaste ofamino acids; Discrimination of D-amino acids from L-aminoacids; Quantification ofthe taste of foods; Interaction between taste qualities; Suppression ofbitterness due to phospholipids; Scale ofbitterness; Suppression of bitterness due to taste substances; Detection of wine flavor using taste sensor and electronic nose; Perspective; Application of electronic nose technology for monitoring water and wastewater; Electronic nose technology; Sensor types; Analysis ofelectronic nose data; Electronic nose instrumentation; Sensor array components; Commercial systems; Application to water and wastewater monitoring; Laboratory-based systems; On-line monitoring systems; lntegrated optical transducers for (bio)chemical sensing; Basic concepts; Fundamentals of optical waveguides; Detection principIes: Types of devices; Technologies for integrated optical transducer fabrication; Substrate materiaIs and specific processes; Basic technological processes; Integrated optical sensors; Absorbancesensor; Gratingcoupler; Resonantmirror; Mach-Zehnder interferometer; Towards a total integrated system; High arder hybrid FET module for (bio)chemical andphysicalsensing; Design concepts of(bio)chemical sensor arrays; High arder sensor module based on an identical transducer principIe; Hybrid module design; ISFET fabrication; Measuring system and sensor configurations; Multi-parameter detection of both (bio)chemical and physical quantities using the same transducer principIe; ISFET-based pH sensor; ISFET-based penicillin sensor; ISFET-based temperature sensor; ISFET-based flow-velocity sensor; ISFET-based flow-direction sensor;ISFET-based diffusion-coefficient sensor; ISFET-based bioelectronic sensor; Applications of the hybrid sensor module; pH determination in human urine; pH measurement in rain droplets; Summary and conclusion; Microdialysis based lab-on-a-chip, applying a generic MEM Stechnology; The need for in vivo monitoring; Microdialysis; The microdialysis lab-on-a-chip; The micromachined double lumen microdialysis probe connector; The conventional microdialysis probe; Experimental; Results and discussion; The passive and the active calibration system; Passive contraI of a calibration plug; Active contraI of a calibration plug; Closed-loop controlled electrochemically actuated microdosing system; The flow-through potentiometric and amperometric sensor array; The flow-through potentiometric sensorarray; The flow-through reference electrode; The flow-through amperometric sensor; The integrated microdialysis-based lab-on-a-chip; The complete integrated microdialysis lab-on-a-chip; Measurements; Design methodology for a lab-on-a-chip for chemical analysis: the MAFIAS chip; The design path; The design; Chemistry; System schematics; Channel geometry; Specifications for the components; Thecomponents; Nanosensor and nanoprobe systems for in vivo bioanalysis; Background on biosensors and bioreceptors; Biosensing systems; Bioreceptor probes; Fiberoptics nanosensor system; Fabrication of the fiberoptic nanoprobe; Immobilization of receptors onto fiber nanoprobes; Experimental system and protocol for nanoprobe investigation of single cells; Optical measurement system; Applications in bioanalysis; Optical nanofiber probes for fluorescence measurements; Single-cell measurements using antibody-based nanoprobes.