Measure Theory and Probability Theory

Measure Theory and Probability Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 625
Release :
ISBN-10 : 9780387329031
ISBN-13 : 038732903X
Rating : 4/5 (31 Downloads)

Book Synopsis Measure Theory and Probability Theory by : Krishna B. Athreya

Download or read book Measure Theory and Probability Theory written by Krishna B. Athreya and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.


Measure Theory and Probability Theory Related Books

Measure Theory and Probability Theory
Language: en
Pages: 625
Authors: Krishna B. Athreya
Categories: Business & Economics
Type: BOOK - Published: 2006-07-27 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure the
A User's Guide to Measure Theoretic Probability
Language: en
Pages: 372
Authors: David Pollard
Categories: Mathematics
Type: BOOK - Published: 2002 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of takin
Measure, Integration & Real Analysis
Language: en
Pages: 430
Authors: Sheldon Axler
Categories: Mathematics
Type: BOOK - Published: 2019-11-29 - Publisher: Springer Nature

DOWNLOAD EBOOK

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler la
A First Look at Rigorous Probability Theory
Language: en
Pages: 238
Authors: Jeffrey Seth Rosenthal
Categories: Mathematics
Type: BOOK - Published: 2006 - Publisher: World Scientific

DOWNLOAD EBOOK

Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure th
Measure Theory and Probability
Language: en
Pages: 217
Authors: Malcolm Adams
Categories: Mathematics
Type: BOOK - Published: 2013-04-17 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

"...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will