Numerical Methods and Software Tools in Industrial Mathematics

Numerical Methods and Software Tools in Industrial Mathematics
Author :
Publisher : Springer Science & Business Media
Total Pages : 404
Release :
ISBN-10 : 9781461219842
ISBN-13 : 1461219841
Rating : 4/5 (42 Downloads)

Book Synopsis Numerical Methods and Software Tools in Industrial Mathematics by : A. Tveito

Download or read book Numerical Methods and Software Tools in Industrial Mathematics written by A. Tveito and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: 13. 2 Abstract Saddle Point Problems . 282 13. 3 Preconditioned Iterative Methods . 283 13. 4 Examples of Saddle Point Problems 286 13. 5 Discretizations of Saddle Point Problems. 290 13. 6 Numerical Results . . . . . . . . . . . . . 295 III GEOMETRIC MODELLING 299 14 Surface Modelling from Scattered Geological Data 301 N. P. Fremming, @. Hjelle, C. Tarrou 14. 1 Introduction. . . . . . . . . . . 301 14. 2 Description of Geological Data 302 14. 3 Triangulations . . . . . . . . 304 14. 4 Regular Grid Models . . . . . 306 14. 5 A Composite Surface Model. 307 14. 6 Examples . . . . . . 312 14. 7 Concluding Remarks. . . . . 314 15 Varioscale Surfaces in Geographic Information Systems 317 G. Misund 15. 1 Introduction. . . . . . . . . . . . . . . 317 15. 2 Surfaces of Variable Resolution . . . . 318 15. 3 Surface Varioscaling by Normalization 320 15. 4 Examples . . . 323 15. 5 Final Remarks . . . . . . . . . . . . . 327 16 Surface Modelling from Biomedical Data 329 J. G. Bjaalie, M. Dtllhlen, T. V. Stensby 16. 1 Boundary Polygons. . . . . . . . . . . 332 16. 2 Curve Approximation . . . . . . . . . 333 16. 3 Reducing Twist in the Closed Surface 336 16. 4 Surface Approximation. 337 16. 5 Open Surfaces. . . . 339 16. 6 Examples . . . . . . 340 16. 7 Concluding Remarks 344 17 Data Reduction of Piecewise Linear Curves 347 E. Arge, M. Dtllhlen 17. 1 Introduction. . . . . . . . . . . 347 17. 2 Preliminaries . . . . . . . . . . 349 17. 3 The Intersecting Cones Method 351 17. 4 The Improved Douglas Method 353 17. 5 Numerical Examples . . . . . . 360 17. 6 Resolution Sorting . . . . . . . . . . . . . . . . . . 361 18 Aspects of Algorithms for Manifold Intersection 365 T. Dokken 18. 1 Introduction . . . . . . . . . . . . . . . 365 18. 2 Basic Concepts Used . . . . . . . . . .


Numerical Methods and Software Tools in Industrial Mathematics Related Books

Numerical Methods and Software Tools in Industrial Mathematics
Language: en
Pages: 404
Authors: A. Tveito
Categories: Mathematics
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

13. 2 Abstract Saddle Point Problems . 282 13. 3 Preconditioned Iterative Methods . 283 13. 4 Examples of Saddle Point Problems 286 13. 5 Discretizations of Sad
A First Course in Numerical Methods
Language: en
Pages: 574
Authors: Uri M. Ascher
Categories: Mathematics
Type: BOOK - Published: 2011-07-14 - Publisher: SIAM

DOWNLOAD EBOOK

Offers students a practical knowledge of modern techniques in scientific computing.
Numerical Methods in Scientific Computing:
Language: en
Pages: 741
Authors: Germund Dahlquist
Categories: Mathematics
Type: BOOK - Published: 2008-09-04 - Publisher: SIAM

DOWNLOAD EBOOK

This work addresses the increasingly important role of numerical methods in science and engineering. It combines traditional and well-developed topics with othe
Numerical Methods and Software Tools in Industrial Mathematics
Language: en
Pages: 424
Authors: A. Tveito
Categories: Computers
Type: BOOK - Published: 1997-04 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

13. 2 Abstract Saddle Point Problems . 282 13. 3 Preconditioned Iterative Methods . 283 13. 4 Examples of Saddle Point Problems 286 13. 5 Discretizations of Sad
Numerical Methods for Least Squares Problems
Language: en
Pages: 425
Authors: Ake Bjorck
Categories: Mathematics
Type: BOOK - Published: 1996-01-01 - Publisher: SIAM

DOWNLOAD EBOOK

The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to giv