Schubert Calculus and Its Applications in Combinatorics and Representation Theory
Author | : Jianxun Hu |
Publisher | : Springer Nature |
Total Pages | : 367 |
Release | : 2020-10-24 |
ISBN-10 | : 9789811574511 |
ISBN-13 | : 9811574510 |
Rating | : 4/5 (11 Downloads) |
Download or read book Schubert Calculus and Its Applications in Combinatorics and Representation Theory written by Jianxun Hu and published by Springer Nature. This book was released on 2020-10-24 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.