Biomechanical Model of Pediatric Upper Extremity Dynamics During Wheelchair Mobility

Biomechanical Model of Pediatric Upper Extremity Dynamics During Wheelchair Mobility
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:881117423
ISBN-13 :
Rating : 4/5 (23 Downloads)

Book Synopsis Biomechanical Model of Pediatric Upper Extremity Dynamics During Wheelchair Mobility by : Alyssa J. Paul

Download or read book Biomechanical Model of Pediatric Upper Extremity Dynamics During Wheelchair Mobility written by Alyssa J. Paul and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomechanical analysis has been used by many to evaluate upper extremity (UE) motion during human movement, including during the use of assistive devices such as crutches and walkers. However, few studies have been conducted to examine the upper extremity kinetics during wheelchair mobility, specifically within the pediatric population. In 2000, 90% of wheelchair users (1.5 million people) in the United States were manual wheelchair users, requiring the use of their upper body to maneuver the wheelchair as well as perform other activities of daily living. Among children under the age of 18, the wheelchair was the most used assistive mobility device at 0.12% of the USA population (about 88,000 children). Of these children, 89.9% (79,000) use manual wheelchairs. Associated with the leading causes of assistive mobility device usage in children and adolescents, are severe cases of osteogenesis imperfecta (OI), cerebral palsy (CP), myelomeningocele (MM) and spinal cord injury (SCI). Once confined to a wheelchair, the upper extremities must take over the responsibilities of the lower extremities, including mobility and other activities of daily living. For many individuals who are wheelchair-bound since childhood, pain and other pathological symptoms present by their mid to late 20{u2019}s. Due to increased life expectancy and continual wheelchair use, these injuries may cause the user to have reduced, or loss of, independent function as they age, further decreasing quality-of-life. Better knowledge of upper extremity dynamics during wheelchair propulsion can improve understanding of the onset and propagation of UE pathologies. This may lead to improvements in wheelchair prescription, design, training, and long-term/transitional care. Thereby, pathology onset may be slowed or prevented, and quality of life restored. In order to better understand and model the UE joints during wheelchair mobility three main goals must be accomplished: 1. Create an upper extremity kinematic model including: additional segments, more accurate representations of segments and joint locations, consideration of ease of use in the clinical setting with children. 2. Create the corresponding kinetic model to determine the forces and moments occurring at each joint. 3. Implement the model and collect preliminary data from children with UE pathology.


Biomechanical Model of Pediatric Upper Extremity Dynamics During Wheelchair Mobility Related Books

Biomechanical Model of Pediatric Upper Extremity Dynamics During Wheelchair Mobility
Language: en
Pages:
Authors: Alyssa J. Paul
Categories: Arm
Type: BOOK - Published: 2012 - Publisher:

DOWNLOAD EBOOK

Biomechanical analysis has been used by many to evaluate upper extremity (UE) motion during human movement, including during the use of assistive devices such a
Wheeled Mobility Biomechanics
Language: en
Pages: 93
Authors: Philip Santos Requejo
Categories: Biotechnology
Type: BOOK - Published: 2016-11-10 - Publisher: Frontiers Media SA

DOWNLOAD EBOOK

For the manual wheelchair (MWC) user, loss of lower extremity function often places the burden for mobility and activities of daily living on the upper extremit
Biomechanical Assessment of Upper Extremity Dynamics During Lofstrand Crutch-assisted Gait in Children with Myelomeningocele
Language: en
Pages: 384
Reduced Order Models for the Biomechanics of Living Organs
Language: en
Pages: 494
Authors: Francisco Chinesta
Categories: Technology & Engineering
Type: BOOK - Published: 2023-05-25 - Publisher: Elsevier

DOWNLOAD EBOOK

Reduced Order Models for the Biomechanics of Living Organs, a new volume in the Biomechanics of Living Organisms series, provides a comprehensive overview of th