Data Science in Theory and Practice

Data Science in Theory and Practice
Author :
Publisher : John Wiley & Sons
Total Pages : 404
Release :
ISBN-10 : 9781119674733
ISBN-13 : 1119674735
Rating : 4/5 (33 Downloads)

Book Synopsis Data Science in Theory and Practice by : Maria Cristina Mariani

Download or read book Data Science in Theory and Practice written by Maria Cristina Mariani and published by John Wiley & Sons. This book was released on 2021-09-30 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.


Data Science in Theory and Practice Related Books

Data Science in Theory and Practice
Language: en
Pages: 404
Authors: Maria Cristina Mariani
Categories: Mathematics
Type: BOOK - Published: 2021-10-12 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a com
Data Science in Theory and Practice
Language: en
Pages: 388
Authors: Jaydip Sen
Categories:
Type: BOOK - Published: 2024-09-13 - Publisher: Cambridge Scholars Publishing

DOWNLOAD EBOOK

This comprehensive edited volume showcases the latest breakthroughs and innovative research in the rapidly evolving field of data science, and brings together c
Data Science in Theory and Practice
Language: en
Pages: 404
Authors: Maria Cristina Mariani
Categories: Mathematics
Type: BOOK - Published: 2021-09-30 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a com
Data Science: Theory and Applications
Language: en
Pages: 348
Authors:
Categories: Mathematics
Type: BOOK - Published: 2021-03-03 - Publisher: North Holland

DOWNLOAD EBOOK

Data Science: Theory and Applications, Volume 44 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting int
Causal Inference in Statistics
Language: en
Pages: 162
Authors: Judea Pearl
Categories: Mathematics
Type: BOOK - Published: 2016-01-25 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we