Geometric Optics for Surface Waves in Nonlinear Elasticity

Geometric Optics for Surface Waves in Nonlinear Elasticity
Author :
Publisher : American Mathematical Soc.
Total Pages : 164
Release :
ISBN-10 : 9781470440374
ISBN-13 : 1470440377
Rating : 4/5 (74 Downloads)

Book Synopsis Geometric Optics for Surface Waves in Nonlinear Elasticity by : Jean-François Coulombel

Download or read book Geometric Optics for Surface Waves in Nonlinear Elasticity written by Jean-François Coulombel and published by American Mathematical Soc.. This book was released on 2020-04-03 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equation, which is referred to as “the amplitude equation”, is an integrodifferential equation of nonlocal Burgers type. The authors begin by reviewing and providing some extensions of the theory of the amplitude equation. The remainder of the paper is devoted to a rigorous proof in 2D that exact, highly oscillatory, Rayleigh wave solutions uε to the nonlinear elasticity equations exist on a fixed time interval independent of the wavelength ε, and that the approximate Rayleigh wave solution provided by the analysis of the amplitude equation is indeed close in a precise sense to uε on a time interval independent of ε. This paper focuses mainly on the case of Rayleigh waves that are pulses, which have profiles with continuous Fourier spectrum, but the authors' method applies equally well to the case of wavetrains, whose Fourier spectrum is discrete.


Geometric Optics for Surface Waves in Nonlinear Elasticity Related Books

Geometric Optics for Surface Waves in Nonlinear Elasticity
Language: en
Pages: 164
Authors: Jean-François Coulombel
Categories: Education
Type: BOOK - Published: 2020-04-03 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (o
Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics
Language: en
Pages: 313
Authors: Ferruccio Colombini
Categories: Mathematics
Type: BOOK - Published: 2017-04-25 - Publisher: Springer

DOWNLOAD EBOOK

The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rom
Degree Theory of Immersed Hypersurfaces
Language: en
Pages: 74
Authors: Harold Rosenberg
Categories: Mathematics
Type: BOOK - Published: 2020-09-28 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where
Minimal Weak Truth Table Degrees and Computably Enumerable Turing Degrees
Language: en
Pages: 104
Authors: Rodney G. Downey
Categories: Mathematics
Type: BOOK - Published: 2020-09-28 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

First, there are sets with minimal weak truth table degree which bound noncomputable computably enumerable sets under Turing reducibility. Second, no set with c
Conformal Graph Directed Markov Systems on Carnot Groups
Language: en
Pages: 170
Authors: Vasileios Chousionis
Categories: Mathematics
Type: BOOK - Published: 2020-09-28 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemann