Geometry of Lengths, Areas, and Volumes
Author | : James W. Cannon |
Publisher | : American Mathematical Soc. |
Total Pages | : 133 |
Release | : 2017-11-16 |
ISBN-10 | : 9781470437145 |
ISBN-13 | : 1470437147 |
Rating | : 4/5 (45 Downloads) |
Download or read book Geometry of Lengths, Areas, and Volumes written by James W. Cannon and published by American Mathematical Soc.. This book was released on 2017-11-16 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The first volume begins with length measurement as dominated by the Pythagorean Theorem (three proofs) with application to number theory; areas measured by slicing and scaling, where Archimedes uses the physical weights and balances to calculate spherical volume and is led to the invention of calculus; areas by cut and paste, leading to the Bolyai-Gerwien theorem on squaring polygons; areas by counting, leading to the theory of continued fractions, the efficient rational approximation of real numbers, and Minkowski's theorem on convex bodies; straight-edge and compass constructions, giving complete proofs, including the transcendence of and , of the impossibility of squaring the circle, duplicating the cube, and trisecting the angle; and finally to a construction of the Hausdorff-Banach-Tarski paradox that shows some spherical sets are too complicated and cloudy to admit a well-defined notion of area.