Handbook of Deep Learning Applications
Author | : Valentina Emilia Balas |
Publisher | : Springer |
Total Pages | : 380 |
Release | : 2019-02-25 |
ISBN-10 | : 9783030114794 |
ISBN-13 | : 3030114791 |
Rating | : 4/5 (94 Downloads) |
Download or read book Handbook of Deep Learning Applications written by Valentina Emilia Balas and published by Springer. This book was released on 2019-02-25 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.