Mobile Edge Artificial Intelligence

Mobile Edge Artificial Intelligence
Author :
Publisher : Elsevier
Total Pages : 206
Release :
ISBN-10 : 9780128238172
ISBN-13 : 0128238178
Rating : 4/5 (72 Downloads)

Book Synopsis Mobile Edge Artificial Intelligence by : Yuanming Shi

Download or read book Mobile Edge Artificial Intelligence written by Yuanming Shi and published by Elsevier. This book was released on 2021-08-17 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Front Cover -- Mobile Edge Artificial Intelligence -- Copyright -- Contents -- List of figures -- Biography -- Yuanming Shi -- Kai Yang -- Zhanpeng Yang -- Yong Zhou -- Preface -- Acknowledgments -- Part 1 Introduction and overview -- 1 Motivations and organization -- 1.1 Motivations -- 1.2 Organization -- References -- 2 Primer on artificial intelligence -- 2.1 Basics of machine learning -- 2.1.1 Supervised learning -- 2.1.1.1 Logistic regression -- 2.1.1.2 Support vector machine -- 2.1.1.3 Decision tree -- 2.1.1.4 k-Nearest neighbors method -- 2.1.1.5 Neural network -- 2.1.2 Unsupervised learning -- 2.1.2.1 k-Means algorithm -- 2.1.2.2 Principal component analysis -- 2.1.2.3 Autoencoder -- 2.1.3 Reinforcement learning -- 2.1.3.1 Q-learning -- 2.1.3.2 Policy gradient -- 2.2 Models of deep learning -- 2.2.1 Convolutional neural network -- 2.2.2 Recurrent neural network -- 2.2.3 Graph neural network -- 2.2.4 Generative adversarial network -- 2.3 Summary -- References -- 3 Convex optimization -- 3.1 First-order methods -- 3.1.1 Gradient method for unconstrained problems -- 3.1.2 Gradient method for constrained problems -- 3.1.3 Subgradient descent method -- 3.1.4 Mirror descent method -- 3.1.5 Proximal gradient method -- 3.1.6 Accelerated gradient method -- 3.1.7 Smoothing for nonsmooth optimization -- 3.1.8 Dual and primal-dual methods -- 3.1.9 Alternating direction method of multipliers -- 3.1.10 Stochastic gradient method -- 3.2 Second-order methods -- 3.2.1 Newton's method -- 3.2.2 Quasi-Newton method -- 3.2.3 Gauss-Newton method -- 3.2.4 Natural gradient method -- 3.3 Summary -- References -- 4 Mobile edge AI -- 4.1 Overview -- 4.2 Edge inference -- 4.2.1 On-device inference -- 4.2.2 Edge inference via computation offloading -- 4.2.2.1 Server-based edge inference -- 4.2.2.2 Device-edge joint inference -- 4.3 Edge training.


Mobile Edge Artificial Intelligence Related Books

Mobile Edge Artificial Intelligence
Language: en
Pages: 206
Authors: Yuanming Shi
Categories: Computers
Type: BOOK - Published: 2021-08-17 - Publisher: Elsevier

DOWNLOAD EBOOK

Front Cover -- Mobile Edge Artificial Intelligence -- Copyright -- Contents -- List of figures -- Biography -- Yuanming Shi -- Kai Yang -- Zhanpeng Yang -- Yong
Mobile Edge Computing
Language: en
Pages: 123
Authors: Yan Zhang
Categories: Computers
Type: BOOK - Published: 2021-10-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achievin
Edge AI
Language: en
Pages: 156
Authors: Xiaofei Wang
Categories: Computers
Type: BOOK - Published: 2020-08-31 - Publisher: Springer Nature

DOWNLOAD EBOOK

As an important enabler for changing people’s lives, advances in artificial intelligence (AI)-based applications and services are on the rise, despite being h
Mobile Edge Artificial Intelligence
Language: en
Pages: 208
Authors: Yuanming Shi
Categories: Computers
Type: BOOK - Published: 2021-08-07 - Publisher: Academic Press

DOWNLOAD EBOOK

Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for de
Practical Deep Learning for Cloud, Mobile, and Edge
Language: en
Pages: 585
Authors: Anirudh Koul
Categories: Computers
Type: BOOK - Published: 2019-10-14 - Publisher: "O'Reilly Media, Inc."

DOWNLOAD EBOOK

Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the nex