Practical Guide To Principal Component Methods in R

Practical Guide To Principal Component Methods in R
Author :
Publisher : STHDA
Total Pages : 171
Release :
ISBN-10 : 9781975721138
ISBN-13 : 1975721136
Rating : 4/5 (38 Downloads)

Book Synopsis Practical Guide To Principal Component Methods in R by : Alboukadel KASSAMBARA

Download or read book Practical Guide To Principal Component Methods in R written by Alboukadel KASSAMBARA and published by STHDA. This book was released on 2017-08-23 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although there are several good books on principal component methods (PCMs) and related topics, we felt that many of them are either too theoretical or too advanced. This book provides a solid practical guidance to summarize, visualize and interpret the most important information in a large multivariate data sets, using principal component methods in R. The visualization is based on the factoextra R package that we developed for creating easily beautiful ggplot2-based graphs from the output of PCMs. This book contains 4 parts. Part I provides a quick introduction to R and presents the key features of FactoMineR and factoextra. Part II describes classical principal component methods to analyze data sets containing, predominantly, either continuous or categorical variables. These methods include: Principal Component Analysis (PCA, for continuous variables), simple correspondence analysis (CA, for large contingency tables formed by two categorical variables) and Multiple CA (MCA, for a data set with more than 2 categorical variables). In Part III, you'll learn advanced methods for analyzing a data set containing a mix of variables (continuous and categorical) structured or not into groups: Factor Analysis of Mixed Data (FAMD) and Multiple Factor Analysis (MFA). Part IV covers hierarchical clustering on principal components (HCPC), which is useful for performing clustering with a data set containing only categorical variables or with a mixed data of categorical and continuous variables.


Practical Guide To Principal Component Methods in R Related Books

Practical Guide To Principal Component Methods in R
Language: en
Pages: 171
Authors: Alboukadel KASSAMBARA
Categories: Education
Type: BOOK - Published: 2017-08-23 - Publisher: STHDA

DOWNLOAD EBOOK

Although there are several good books on principal component methods (PCMs) and related topics, we felt that many of them are either too theoretical or too adva
A User's Guide to Principal Components
Language: en
Pages: 597
Authors: J. Edward Jackson
Categories: Mathematics
Type: BOOK - Published: 2005-01-21 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an ef
Complete Guide to 3D Plots in R
Language: en
Pages: 113
Authors: Alboukadel KASSAMBARA
Categories:
Type: BOOK - Published: - Publisher: Alboukadel KASSAMBARA

DOWNLOAD EBOOK

This book provides a complete guide for visualizing a data in 3 dimensions (3D) using R software. It contains 2 main parts and 7 chapters describing how to draw
An Introduction to Applied Multivariate Analysis with R
Language: en
Pages: 284
Authors: Brian Everitt
Categories: Mathematics
Type: BOOK - Published: 2011-04-23 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken
Applied Unsupervised Learning with R
Language: en
Pages: 320
Authors: Alok Malik
Categories: Computers
Type: BOOK - Published: 2019-03-27 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Design clever algorithms that discover hidden patterns and draw responses from unstructured, unlabeled data. Key FeaturesBuild state-of-the-art algorithms that