Statistical Inference Via Convex Optimization

Statistical Inference Via Convex Optimization
Author :
Publisher : Princeton University Press
Total Pages : 655
Release :
ISBN-10 : 9780691197296
ISBN-13 : 0691197296
Rating : 4/5 (96 Downloads)

Book Synopsis Statistical Inference Via Convex Optimization by : Anatoli Juditsky

Download or read book Statistical Inference Via Convex Optimization written by Anatoli Juditsky and published by Princeton University Press. This book was released on 2020-04-07 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.


Statistical Inference Via Convex Optimization Related Books

Statistical Inference Via Convex Optimization
Language: en
Pages: 655
Authors: Anatoli Juditsky
Categories: Mathematics
Type: BOOK - Published: 2020-04-07 - Publisher: Princeton University Press

DOWNLOAD EBOOK

This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis o
Learning Theory
Language: en
Pages: 667
Authors: Hans Ulrich Simon
Categories: Computers
Type: BOOK - Published: 2006-09-29 - Publisher: Springer

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 19th Annual Conference on Learning Theory, COLT 2006, held in Pittsburgh, Pennsylvania, USA, June 2006. Th
Signal Processing and Machine Learning Theory
Language: en
Pages: 1236
Authors: Paulo S.R. Diniz
Categories: Technology & Engineering
Type: BOOK - Published: 2023-07-10 - Publisher: Elsevier

DOWNLOAD EBOOK

Signal Processing and Machine Learning Theory, authored by world-leading experts, reviews the principles, methods and techniques of essential and advanced signa
PDE Control of String-Actuated Motion
Language: en
Pages: 512
Authors: Ji Wang
Categories: Science
Type: BOOK - Published: 2022-10-25 - Publisher: Princeton University Press

DOWNLOAD EBOOK

New adaptive and event-triggered control designs with concrete applications in undersea construction, offshore drilling, and cable elevators Control application
Delay-Adaptive Linear Control
Language: en
Pages: 355
Authors: Yang Zhu
Categories: Mathematics
Type: BOOK - Published: 2020-04-28 - Publisher: Princeton University Press

DOWNLOAD EBOOK

Actuator and sensor delays are among the most common dynamic phenomena in engineering practice, and when disregarded, they render controlled systems unstable. O